第五章 第二法則との調和
非対称性を求めて
2006/08/28  

不確定分子モーターの本質は、一方向の流れを作り出すことにある。 熱運動とはあらゆる方向への均等な運動、つまり双方向である。 双方向の運動に、可逆な部品だけを用いて一方向の流れを作り出すことができるだろうか。 もし一方向の流れが作り出せるというのであれば、それを生み出す何か根本的な理由があるはずだ。 その理由が見出せないなら、やはり一方向の流れを作り出すことは不可能だと結論せざるを得ない。 そもそも非対称性とは、どのような状況下で生じるのであろうか。 以下に探ってみたい。

最も単純な系から出発しよう。 一方向にだけエネルギーが流れる状況とは、ちょうど摩擦のない車輪が一方向に回り続ける状況に似ている。 いま、右回りと左回りの区別ができる車輪があったとする。 そして、たまたま手元にあった1個の車輪が右回りであったとしよう。 この1個の車輪は左右2つの可能性のうち、右だけをとっているのだから非対称である。 なぜ非対称なのだろうか。 この場合、なぜと聞かれても返答に困る。 たまたま最初に右回りだったからである。 非対称性の起源は車輪の構造にあるのではなく、初期条件にあったに過ぎない。 他にも似たような車輪をたくさん、無作為に用意すれば、恐らくそのうちの半分は右回りで、半分は左回りとなるであろう。 その中からたまたま取りだした1個が右回りであった、というだけの話である。

上の車輪の例はいまさら取り立てて言うほどのこともない、当たり前の話なのだが、ここから1つの見解を引き出せる。 非対称性は初期条件として与えることができる。 最初にたまたま右回りであって、その後右回りを続けるものがあったとしても不思議はない、ということである。 逆に言えば、もし構造が対称であるならば、初期条件として与える以外の方法で非対称性を生み出す方法はない。 (少なくともかつて見出されたことはない。 素粒子の世界でパリティが破れる現象があると言われているが、ここでは古典的なものに話を限ろう。) この考えを不確定分子モーターにあてはめてみると、分子モーターのどこかに初期条件として与えられる非対称性が潜んでいる、ということになる。 ということは、そもそも最初に分子モーターを配置した向きが非対称性を生んでいるのではないだろうか。 分子モーターの配置の仕方には、ある向き、例えばA->Bに配置した場合と、その逆向き、B->Aに配置した場合の2通りがある。 そして実際に実現するのは2通りのうちどちらか1つなのだから、ここに非対称性の源泉を見ることができるのではないか。 しかし、この推測を簡単に受け容れる訳にはゆかない。 なぜなら分子モーターは可逆な部品のみによって構成されているのである。 配置が2通りある、というのは分子モーター自身が非対称であってこそ初めて成り立つのだが、分子モーター自身の非対称性はまだ明らかではない。 ここでは
  「非対称性は初期条件に織り込まれている必要がある」
という事実の確認にとどめ、考察を進めることにする。

一方向に回転する車輪は外部から力が加わらない限り方向を転ずることはない。 右回りはいつまでたっても右回りのままである。 これをもう一歩熱運動に近づけるため、何らかのきっかけでクルリと向きが反転する車輪というものを考えてみよう。 このような機械的な装置を想像するのは困難だが、例えば電子のスピンのようなものを思い浮かべればよいだろう。 (実際の電子は剛体のように回転しているわけではない。磁場に対して2つの状態をとる性質を模式的に右回り、左回り、と表現しているだけである。) いま、右回りしている車輪に外部から何らかのきっかけを与えると車輪の向きが反転し、左回りに転ずるのだとしよう。 ポテンシャルエネルギーのイメージを思い描けば、車輪の向きの反転は、ちょうど1つの谷底から山を越えてもう1つの谷底へと移るようなものである。 このポテンシャルの山のことを「障壁」と呼ぼう。 また、反転するのに必要となる外力の大きさ、越えなければならない山の高さを「障壁の高さ」と呼ぶことにしよう。 このような反転付き車輪の場合、もはや非対称性を維持することはできない。 たとえ最初に車輪が右回りであったとしても、何かのはずみで障壁を越え、逆回りに転ずるかもしれないからである。 右回りなら右回りといった状態を維持するための方法は、基本的には2つしかない。

1.障壁の高さを非常に高くして、左右の反転が事実上できないようにする。
2.右回りと左回りの間に差異を設け、例えば右回りの方を左回りよりも起こりやすくする。
1.の方法は要するに反転できないように閉じこめておく、ということである。 機械的な普通の車輪は勝手に反転したりしないので、ある意味高さ無限大の障壁に囲まれている、とも言えるだろう。
2.の方法は、右回りと左回りの間にポテンシャルエネルギーの差を設けておく、というものである。 例えば電子のスピンの場合、磁場をかければ磁場に沿った向きのスピンは居心地が良く、反対向きのスピンは居心地が悪い。 かくして磁場に沿った向きのスピンの方が多くなる。
さて、不確定分子モーターの非対称性を考える場合、上の方法2.の方は適用できない。 というのも方法2.にはエネルギー勾配(エネルギーの差異)が必要だからである。 不確定分子モーターに残された方法は1.の障壁の高さを非常に高くする、というものである。 右回りなら右回り、といった性質をかたくなに維持し、それ以外の状態が実現しない様に制限を設けるということだ。 スピンのたとえを借りるならば、非対称性にはちょうど不揮発性メモリーの様な性質が必要なのである。 不確定分子モーターのどこを探せばこういった「非対称の記憶」があるのか、簡単には分からない。 ここでも非対称性の1つの条件として
  「制限された状態を維持することが必要」
だということを確認するにとどめる。

さて、以上で非対称性をもたらす前提条件について考えてきたのだが、次に、分子モーターが動作した場合に系が満たすべき条件を挙げてみたい。 一方向にのみ回っている状態は、両方向いずれにも回り得る状態と比較すれば、より限定された状態しか取り得ない。 系が取り得る全ての状態を取り尽くしたのが熱平衡なのだとすれば、一方向にのみ回っている状態は熱平衡ではない。
  「一方向に回っている系は熱平衡に達していない。少なくとも左右1bitだけの情報量を有している。」
いま、右なら右方向だけに、確実に一方向にだけに回っている系があったとしよう。 それが車輪の回転であっても、電子のスピンであっても構わない。 とにかく一方向の系全体は1bitのメモリーとして機能し得ることに気づく。 1bitのメモリーが保持する値を不定にすることによって、1bit相当のkT*ln2だけの利用可能なエネルギーが取り出せるはずだ。 つまり、右回り一方向の状態は、右か左か分からないような状態に比べれば1bit分だけ熱平衡から離れているのである。 この点が不確定分子モーターにとって最大の疑問点となる。 不確定分子モーターは、初期の熱平衡状態から出発し、非対称な一方向の状態を作る。 この始めと終わりの間にある、少なくとも1bitの違いは一体どこから生じたのだろうか。

改めて見直すと、不確定分子モーターの持つ非対称性には疑問が残ることがわかるだろう。 ここでは非対称性の満たす条件として次の3点を挙げた。

1.非対称性は初期条件に織り込まれている必要がある。
2.系が全ての状態を取り得るのではなく、一部の状態しか取り得ないような制限(拘束条件)が必要。
3.系は熱平衡状態に達しておらず、少なくとも非対称の起源となる1bitの情報を有していなければならない。
不確定分子モーターは、これらの条件を全て満たさなければならないのである。

ページ先頭に戻る▲